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We studied effects of chaos added to the dynamics of a neural network model. By numerical simulations, we
found the neural network with forcing by chaotic noise operated very efficiently to solve an optimization
problem. We also showed that short time correlation of chaos was relevant to the dynamics of the network and

it could work effectively for global minima search.

PACS number(s): 05.45.+b, 82.20.Mj, 05.40.+j

Chaotic neural networks have recently received attention
due to the potential capability for information processing
[1-5]. The idea of chaotic neural networks which operate
chaotically was discussed by Freeman [1] in the study of the
olfactory system, and a model of a chaotic single neuron was
proposed by Aihara et al. [3]. Since then, it has been known
that chaos may play a nontrivial and unexpected role in in-
terconnected chaotic neurons [3—5]. For instance, desirable
results were reported in associative memory search and op-
timization tasks by using such a model by Nozawa [5]. He
derived a discrete time neural network model by taking Eu-
ler’s difference of a typical Hopfield model. In the model,
each neuron behaves as a chaotic oscillator represented by a
one-dimensional map which is sensitive to the control pa-
rameters. When each map was globally coupled with an ap-
propriate synaptic weight as in the ordinary Hopfield model,
he showed that the best solution of a ten city traveling sales-
man problem was found with probability of more than 90%
within 1000 iterative steps. However, behavior of such net-
works is, in general, quite complex, and the dynamics and
mechanism of their operation still have been open problems.
Therefore, in order to clarify the effects of chaos, it is im-
portant at this stage to study a simpler model in which cha-
otic oscillators can be separated from other components and
in which conventional behavior as neural networks can be
recovered by changing parameters.

Combinational optimization problems can be solved with
neurocomputers in which the dynamics is described by re-
laxation processes with a Lyapunov (energy) function. It is
known that trapping by spurious minima in the energy func-
tion is the origin of difficulty in this kind of problem for
efficient operation, especially in a large size problem. One of
the naive methods to avoid the trapping is to excite the state
with some additive noise large enough to kick it out from
such local minima. A number of techniques and algorithms
have been proposed so far for this purpose [6]. Most of these
works studied what is the best scheduling for temporal varia-
tion of white noise to lead the system to the best solution. In
addition, motion driven by colored or correlated noise se-
quences in a multistable system has also been studied in the
fields of chemistry and biophysics. When the noise has an
appropriate correlation, as found in chaos, some nontrivial
behaviors such as symmetry breaking of motion and extraor-
dinarily large mobility compared to the case with white noise
[7,8] are reported. Anomalous effects of colored noise on the
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barrier crossing rate in potential energy have also been stud-
ied to obtain a physical understanding of the chemical reac-
tion [9]. The results from these works suggest that correlated
time series may accelerate the activation of the network from
metastable states, and this helps the network to escape from
spurious local minima. In this paper, based on this idea, we
introduce a simple chaotic neural network model by using
chaotic noise generators instead of thermal noise, and study
the effect of chaotic noise on the performance in solving a
traveling salesman problem (TSP) as a typical combinational
optimization.

First we introduce a chaotic neural network model as an
extension of the Hopfield and Tank implementation of the
analog neural network [10]. The connection between neurons
is basically represented by a modified Hopfield model, and
noise generators are attached to neural units as illustrated in
Fig. 1. Let u] be the state of neuron i at time » and V7 be the
output from the neuron i. Neurons are interconnected by
synapses of weight W, ;, and the states of the neurons are
updated by the following scheme with time difference A¢:

u;.ﬂ:At(z W Vi+h|+(1—Anu}, ey
j
Vi=ful +A 7)), @

where A is a multiplier to the noise 7] whose amplitude
is normalized to be unity, and f is a threshold function de-
fined as

inputs

Vi

FIG. 1. Schematic diagram of model neuron with a noise
generator.
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Note that a generator of #; is assigned to each neuron and
they are independent of each other. The performance of the
network may depend on the nature of the noise, and there
can be several varieties of noise source 7 including chaotic
oscillators. Here we study the dynamics of the network by
adding the following three types of noise.

Case 1: Uniformly distributed random numbers. As a
noise, we used first a sequence of uniformly distributed ran-
dom numbers x; €[0,1] which have no correlation between
successive values, i.e.,

<x?x;'n>= Q(si,j5n,m ’

where Q is a constant. In this case, the dynamics of the
network behaves as a so-called Gaussian machine [11], and
Q is associated with a temperature parameter in the Gaussian
machine.

Case 2: Logistic map. The following map is used as noise:

X =ax?(1-x7), 4

where a €[0,4] is the control parameter of map. In the
present study we used the same values of a for all neurons.
Thus all the noise generators are operated with the same rule
but with different initial conditions.

Case 3: Logistic map with shuffling. In this case, the time
series of the logistic map during 1000 iterative steps is stored
into a computer memory, and selected one by one at random.
Therefore the sequences of the shuffled noise have no time
correlation, while other properties of x; are the same as for
case 2.

In order to make a quantitative comparison, raw data gen-
erated from those noise sources are normalized by the fol-
lowing procedure:

_x:l_<x>n

= ®)

Ox

where o, is the standard deviation of x from its average over
n, ie., o>={(x"—{x),)),.

As is well known, the dynamics of the network without
noise sources can be expressed in terms of the relaxation
processes, if synaptic weight W; ; is symmetric and if there is
no feedback, in the potential energy defined by

Vi
E==1S W, ,ViV;—h2 Vi+ >, f f 1 (w)dv. (6)
; ; 172

L,J
From an appropriate presentation of the energy function E
for the TSP, a set of synaptic weight can be obtained. In this
study, we used the TSP energy function in Ref. [10]: Using x
and y as the index for cities and k and / for the order of
visiting,

Wi,j: - c05x,y(1 - 5k,l) —C 51(,1( 1- 6x,y) —C
—c3dy (g pe1t Ok i-1)> (7)
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where &; ; is Kronecker’s delta, and d, , is the distance be-
tween the cities indexed with x and y. For instance, for an N
city problem, one can assign x=i divN, k=i modN,
y=jdivN, and /=j modN. In the following analysis, the
configuration of cities is also identical to that reported in Ref.
[10] with ten cities in two-dimensional space. Thus we had
100 neural units and 100 synapse connections. Due to the
added noise, the dynamics of the network is no longer of the
simple relaxation type in the potential energy given by Eq.
(6). However, as long as the external noise is small, one
expects that the state of the network in output-vector space
senses the force due to the gradient of the energy of Eq. (6)
and additive fluctuating force. The main purpose of the
present work is to examine the effect of the additive fluctu-
ating force.

Parameter tuning is one of the important issues to im-
prove the performance of such kinds of networks. In fact,
total performance for finding the best solution strongly de-
pends on the set of coefficients in E, bias k, amplitude of
externally applied noise A, and the properties (generators) of
noise. Since this study is intended to clarify the role of cha-
otic noise for the dynamics of the optimizing device, we fix
in the following analysis some of the parameters as
co=c1=c3=5,c,=1.5, h=15, and A=3 and compare re-
sults by changing the nature of the noise sources. Every
noise source has the same average amplitude, whereas the
color and distribution might be different.

In this model, each neural unit has two separated dynam-
ics with different time scales: One is the fast dynamics pro-
duced by iterations of noise generators, and the other is the
slower one represented by an ordinary discrete neural net-
work model. Thus the ratio of these time scales can be con-
sidered as another tunable parameter. In our simulations, we
took Ar=0.1 in every case. Note that, if this ratio is too large
(i.e., At is very small), case 2 will be reduced to case 3
because of the chaotic nature of the output.

We confirmed that all the network models defined above
could find solutions of the TSP. However, the states u; of
neural units fluctuate with a large deviation due to the exter-
nal force noise as seen in Fig. 2. In our preliminary analysis,
when the network worked efficiently to visit solutions, the
power spectrum of the fluctuation of u} had a 1/f“-like prop-
erty, where the exponent o was about 1.5. The detailed char-
acteristics of the time series seem to depend on models and
parameters. Looking at Fig. 2, although the behavior of u;
seems to be rather complex, the states of u; can still be
separated into two domains with an appropriate threshold
value (e.g., about —3) and one can distinguish which unit is
firing and which is not. Thus, if the operation is successful,
the representation of the solution is obtained at every itera-
tive step. Due to the dynamical properties of the network,
evaluation of performance should be carried out by averag-
ing over time. To do that, we have tested the visiting fre-
quency P g at the optimal solutions which is defined by

Ps= (number of steps staying at the optimal solution)/
(total steps).

In this paper, we calculated Png for the last 1000 steps of
2000 iterative steps of computer runs. Pg can be considered
as an index of the escaping efficiency from local minima.
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FIG. 2. Typical time evolution of neuron states u; near the best
solution (a) in case 1 (white noise) and (b) in case 2 (chaotic noise).
All parameters are the same in both except for noise generators. In
case 2, once the optimal solution is found, u; stays there more
persistently compared to case 1.

First, we checked the performance of the model with
white noise generators (case 1) as a reference for later dis-
cussions. For 100 independent trials starting from random
initial conditions, the obtained P g was about 0.003 with the
values of the parameters mentioned above. With more care-
ful parameter tuning of # and A, we obtained at most
P s=0.49.
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FIG. 3. Performance of network versus the control parameter for
the logistic map (black rectangles) and the logistic map with shuf-
fling (white rectangles). Each point is obtained by 30 independent
runs of the simulation started from different initial conditions. For
comparison, the Lyapunov exponent of the logistic map is also
shown by a solid line.
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FIG. 4. Decay rate B of the histogram n(l)~exp(B!) of events
in which positive sequence y; successively occurs / times in the
“logistic noise generator” for (a) the logistic map, and (b) the three-
fold iterated logistic map by changing the control parameter a. Data
are shown only for nonperiodic states.

Next, the efficiency of computing in case 2 would be
sensitive to the characteristics of the output signal from the
maps. In Fig. 3, Pqg is plotted by using the logistic map as a
noise source versus a (black rectangles) with the correspond-
ing Lyapunov exponent of the logistic map (solid line). It is
remarkable that below the band merging point (agy=3.68),
even in the parameter regime where the map already gener-
ates chaotic sequences, the performance cannot be improved
at all compared to that for white noise. However, once two
bands merge, the performance drastically increases and
reaches about 100% except in the windows of the logistic
map. By numerical evidence, the network works most effec-
tively near the largest period-3 window. The performance
remains high for the parameter value a greater than that for
the period-3 window, and gradually decreases when a ap-
proaches 4.

The results of P g obtained are not trivial. As seen in Fig.
3, while there seems to be no correlation between the perfor-
mance and the Lyapunov exponent of the map, some charac-
teristics of chaotic noise which depend on the control param-
eter a certainly have a significant effect on the total behavior
of the network.

To understand what factors are relevant in ‘“logistic
noise” for such a remarkable improvement of the operation,
we preserved the distribution of inputs but erased the corre-
lations by shuffling the time series (case 3). In Fig. 3, the
obtained performance versus control parameter a is shown
by white rectangles. We observe that the annihilation of cor-
relation remarkably decreased the performance at any control
parameter above the band merging point agy,, while it leads
to better results below it. These observations clearly indicate
that correlation of the noise plays an important role for the
network system to find the best solution.

In order to characterize the time series more specifically,
we examined the series of noise from the logistic mapping in
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terms of the following symbolic analysis. Taking a new vari-
able defined by y;=x;— (x;), we count the run length / of the
positive sequences in y; and make its histogram n(/), which
decays generally exponentially as

n(l)~exp(Bl). (®)

Here the decay rate B is a measure of homogeneity and per-
sistence of noise. When there is no correlation between suc-
cessive events, the problem can be reduced to an ideal coin
tossing, i.e., S=—In2=—0.693... . The dependence of 8 on
a is shown in Fig. 4 for the logistic map f and for the three-
fold iterated map f 3. While the decay rate of correlation for
f barely changes form the case of independent coin tossing,
B for f3 largely depends on a, where the qualitative ten-
dency of B, if we exclude periodic states, resembles the per-
formance plots as shown in Fig. 3. We also studied further
iterated maps and found again that the slow decay of corre-
lation there could improve the performance, though not as
much as that for f3. Therefore the distribution function of
these sojourn times is, most likely, crucial for the network
performance. It is clear that a strongly correlated sequence of
noise helps to kick the state out of local minima. It is noted
that the correlation of the chaotic noise decreased P g below
agy - The reason for this would be due to the fact that the
sign of y; alternates (quasi)periodically and that the effect of
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the noise is essentially annihilated. The fact that Pog has a
maximum in case 3 is related to the distribution of the noise
produced from the logistic map. The distribution of the noise
is another issue for the network performance, but it is not the
subject of the present paper.

There have been more complex chaotic networks so far
proposed for the purpose of improving efficiency to solve the
optimization problem [4,5]. Some characteristics of them
are, for example, as follows. (i) The individual neural unit
(map) behaves as a chaotic oscillator whose behavior is very
sensitive to a control parameter. (ii) The parameter of the
map is also a dynamical variable. These features of the net-
work create new aspects and possibly additional improve-
ment of the efficiency in the optimization tasks. However, it
is harder to analyze and comprehend the role of chaos in
these systems, as the energylike function is not defined there.
The present research was intended to clarify the role of cha-
otic noise in the global dynamics of a simple conventional
neural network designed to solve optimization problems. We
showed that the efficiency of the solution can be raised by
adding chaotic noise as high as those of more complex sys-
tems, and clarified the role of chaotic noise in a simple neu-
ral network.
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